Int, J. Solids Structures, 1977, Vol. 13, pp. 239-251. Pergamon Press. Printed in Great Britain

IL'TUSHIN’S POSTULATE AND RESULTING THERMODYNAMIC
CONDITIONS ON ELASTO-PLASTIC COUPLING

Yannis F. DAFaLIAs
Department of Civil Engineering, Bainer Hall, University of Calironia, Davis, CA 95616, U.S.A.

(Received 14 May 1976, revised 29 July 1976)

Abstract—Il'iushin’s postulate is restated within a general thermodynamic strain space formulation of rate
independent plasticity by means of plastic internal variables. This yields a general expression in terms of
appropriate thermodynamic potentials. A combination of a thermodynamic condition, derived from the
general development, with the results of Il'iushin’s postulate, furnishes explicit conditions on elasto-plastic
coupling. A specific example is presented, with the plastic work being the only plastic internal variable.
Necessary and safficient consitions on the elastic moduli and their change with plastic deformation are derived,
for the thermodynamic condition to be satisfied.

I. INTRODUCTION

Il'iushin’s postulate of plasticity[1) states that if the work, W, done by the external forces in an
isothermal closed-cycle of deformation of an elasto-plastic material is positive, then plastic
deformation takes place, and if the work is zero, only elastic deformation occurs. Stated
analytically yields

W=j oyéy dt =0 m
1 4

with gy, é; appropriate stress and strain-rate tensors and P a closed path of integration in strain
space. Assuming a linear elastic behavior with the elastic moduli functions of the plastic
deformation, and considering a straight line closed path in strain space, II'iushin derived on the
basis of (1) an expression for the direction of the plastic strain rate. This expression becomes the
normality condition, i.e. the plastic strain rate is normal to the yield surface in stress space if the
elastic moduli do not depend on the plastic deformation. This was derived earlier using Drucker’s
postulate(2], but II'iushin’s postulate is less restictive and has the advantage to treat
simultaneously stable and unstable behavior[1, 3].

To exemplify this, consider the uniaxial stress-strain curve in Fig. 1. The material behavior is
conventionally called stable along the rising part OU of the curve, and unstable along the falling
part UZ. This characterization reflects the stability and instability observed during the uniaxial
experiment performed with a testing machine controlling the stress, and can be analytically
described and. generalized by Drucker’s postulate of stability[2]. If, however, the strain is
controlled, which is the case in most real situations, no instability is observed during the
corresponding experiment.

II'iushin’s postulate is obviously satisfied for any closed strain path starting at any point on the
rising curve OU. Furthermore, it is satisfied for a similar path starting at any point on the falling
curve UZ, as the path BCc indicates. The latter case cannot be obtained from Drucker’s
postulate, simply because no similar cycle of stress is possible. Therefore, Il'iushin’s postulate
applies to all paths of interest. In fact it should not be viewed as a postulate related to some kind
of material stability, but merely as a generalization of the fact that the elastic modulus E is always
positive and greater than the tangent modulus E' which can be positive (OU), zero (point U) or
negative (UZ), precluding upon unloading a behavior shown by the path Aa’. In other words this
posutulate is simply a constitutive assumption characterizing a very large class of materials
behaving as shown in Fig. 1, including both “‘stable” and “unstable” behavior.

Proposing his postulate I'iushin presented also a strain space formalism of plasticity[1] by
simply considering the yield surface in strain space. He did not, however, give a complete strain
space formulation of rate independent plasticity within thermodynamics. This is done in [4] using
plastic internal variables and is summarized in the following section. A similar development was
presented in [12] and to a lesser degree of similarity in [13]. A strain space formulation within a
pusely mechapical theory is also presented in [17], where its significance in treating stable and
unstable behavior is recognized, and explained in the following.
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Fig. 1. Plastic loading in the uniaxial case, for stable and unstable material behavior.

The reason for a strain space formulation here is to treat simultaneously stable and unstable
behavior, since II'iushin’s postulate does so. To clarify this point, recall that in the classical stress
space formulation, plastic deformation occurs when the loading function ! = (df/do, )0y is
positive, with f = 0 the equation of yield surface in stress space and ¢;; the stress-rate. For the
case shown in Fig. 1, the yield surface at a typical point B is the projection b’ of B on the o-axis,
and the loading function ! degenerates to o. Observe that plastic deformation occurs at a stable
point A where o >0, but also at an unstable point B with ¢ <0. Therefore, such a definition of a
loading function fails to characterize unambiguously plastic loading for unstable behavior.
Observe, however, that at both points A and B the total strain rate e is always positive for plastic
loading and negative for elastic unloading along Aa or Bb. This suggests a strain space
formulation. The yield surface at point B in strain space is now the projection b” or B on the
€-axis and the loading function is the €. These notions are generalized and briefly presented in
the following section.

Within this thermodynamic strain space formulation of rate independent plasticity, II'iushin’s
postulate is restated. This yields general expressions in terms of appropriate thermodynamic
potentials allowing for nonlinear elastic response, large deformations and any kind of plastic
strain hardening by means of plastic internal variables. Further use of these expressions provides
relations for the direction of the plastic strain rate in stress and strain space. The normality
condition is obtained if the form of the corresponding thermodynamic potentials reflects the fact
that the elastic properties are not coupled with the plastic deformation.

It is, however, observed that for many materials the elastic properties do change with plastic
deformation. This is particularly true along the falling part of the stress-strain curve. Such falling
part and changing elastic properties may be rare for metals but is a very common phenomenon for
granular media like concrete, rocks, dense sands, overconsolidated clays, etc. The general theory
of plasticity[5] provides thermodynamic conditions on the corresponding thermodynamic
potentials which are derived here within the strain space-plastic internal variables formulation.
Then Il'iushin’s postulate is combined with thermodynamics to obtain explicit conditions on
elasto-plastic coupling. A specific example is presented with the plastic work W* being the only
plastic internal variable entering an appropriate thermodynamic potential. It is further possible to
derive an explicit necesasry (and sufficient for isotropic elastic behavior) condition on the elastic
moduli and their change with W”. The condition derived in this example is compared to the one
obtained without use of II'iushin’s postulate but still assuming elasto-plastic coupling. It should
be emphasized again that this postulate cannot be derived by thermodynamic stability
considerations as shown recently in {14].

As a closing note, observe that the strain space formulation and II'iushin’s postulate are very
suitable in studying coupled elasto-plastic properties; this is so because both the formulation and
the postulate apply to unstable material behavior (falling stress-strain curve) and it is during such
a behavior that the elasto-plastic coupling is mostly pronounced.

2. STRAIN SPACE FORMULATION OF PLASTICITY IN TERMS OF
PLASTIC INTERNAL VARIABLES

A brief summary of a thermodynamic strain space formulation of rate independent plasticity
in terms of plastic internal variables is presented following{4, 7, 8, 18]. We begin by writing the first
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and second laws of thermodynamics in the appropriate form for the field formulation of
continuum mechanics

r’(‘/;+éﬂ+7}8)‘QK,K+SKLEKL=0 (2a)

8y = — (4 +16) + ScrExr -%on,,(zo (b)

where Ex. is the Langrangian strain tensor, Sk, is the symmetric Piola-Kirchhoff stress tensor, 6
is the temperature, Qx is the heat flux across the surface Xy = constant of the reference
configuration, r, ¢, 7 and y denote respectively the heat supply function, the Helmholtz (free
energy) function, the entropy and the entropy production, all measured per unit reference
volume, and a superposed dot designates the rate (material time derivative).

The state at each material point is described by the values of “observed” or “external”
variables and of “hidden” or “internal” variables. The “external” variables here are the
components of the Langrangian strain tensor Ex, and the temperature 4. The “internal”
variables are usually taken to be scalars or components of properly invariant second rank tensors
(e.g. inelastic strain, plastic work). For rate independent plasticity we call them plastic internal
variables or piv for abbreviation, and denote them by gn. Note that the index N of gn has
appropriate dimensions according to the tensorial rank of gn (i.e. zero for scalars, double index
for second rank tensors, etc.).

The constitutive relation of gy are rate-type equations, which must be independent of the
time scale used, for rate independence. Proceeding to formulate the constitutive relation for gy,
the notion of a yield surface in strain-temperature space is introduced, given analytically by

F(EkL, 8, qn)=0. 3

A set Ex;, 8, qn satisfying (3} is a plastic state, and a set rendering F <0 is an elastic state. A
loading function L is defined at a plastic state by

__3F . 9F,
" 9Exr Ex + 0% @

L
Loading is said to occur at a plastic state when L >0, unloading when L <0 and neutral loading
when L =0. Observe that such a definition of the loading function L unambiguously defines
plastic loading for both stable and unstable behavior, according to the observations made in the
introduction.

The common property characterizing the piv is that their rate g, is different than zero at a
given plastic state if L > 0; at an elastic state or at a plastic state with L <Oor L =0, gy =0.In
addition, rate independence must be satisfied for gy. The above requirements are analytically
expressed by

4N= éN (EKL, 8; EKLy és qN)H(L) When F = 0
gv=0 when F<90 &)

where ¢y must be homogeneous of degree one in Ex;, 6 for rate independence and H(L) is the
Heaviside step function defined zero at L =0,

We further consider the case where gy is linear in Ex;, 6. By standard procedures [6], based
on the requirement dnv =0 whenever L =0 for continuity of (5) throughout the strain-
temperature space, follows

4n = rn(Exe, 6,qn)(L) when F=0 ©)

with gy = 0 when F <0, where () is the Macauley bracket defining the operation (L)= LH(L).
Finally, the consistency condition F = 0 must be satisfied for all Ex,, 6 and gy with L >0, which

means that the point representing the current state remains on the changing vield surface during
loading.
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Consistent with our previous constitutive assumption for F, eqn (3), we assume that
¥ = §(Exu, 0, qn). )

Consider now an arbitrary homogeneous temperature distribution 6,x = 0 and an unloading path
from a plastic state defined by an arbitrary set of values Ex,, 8 (it should be pointed out that
right at the plastic state, Ex;, 6 are restricted so as to render L < 0, but thereafter are completely
independent inside the yield surface). Such an arbitrary choice of Ex., 8 is made compatible with
the first law of thermodynamics (2a) by means of an appropriate choice of the heat supply
function r. Then using (6) and (7) we finally derive by standard methods 5] from the requirement
that (2b) must be always satisfied

_W W
Skr = dEx.’ n a6 ®
and
W, =0 ©)

3. PLASTIC STRAIN AND OTHER THERMODYNAMIC POTENTIALS

The plastic strain tensor E%, is introduced as one of the piv g, and it is useful to denote by g,
the remaining piv except E%.. Thus

{an} ={E%w, qu} (10)
where {*} means the set of *. According to (6)
E%. = Rx.(Ey, 0,qyv){LY when F=0 (11)

and E%, = 0 when F < 0. Observe that (11) yields the plastic strain rate in terms of the total strain
rate through L. Such relation can be seen in a more familiar form considering the uniaxial case for
small strains. Then ¢ = E‘é = F*é”, thus é° = (E'/E")é, where E' is the tangent modulus of
the stress-strain curve and E® is the plastic modulus.

Considering the relations (6) and (11), a tensor function Anx, function of E, 6, gn can
always be defined{4] from

q~ = ANKLE ' (12)
which yields the system of N equations with N X 6 unknowns
rv = AnkiRgr. (13)
If for example gy is the E¥ itself, then (13) yields Ry = AuxiRxy, thus Ayk; = 8k, as one
possible solution.
Following[5] an elastic strain tensor E%; is introduced by

E%: = Exi — Eke. (14)

It is useful to have ¢ a function of E%., 8 and gn. We can therefore rewrite (7) using (10) and (14)
as

¥ = §(Exr+ E%y, 0, E%1, o) = ¥(E%w, 6, qn) (15)

where ¢ is a different function of its arguments than . Observe from _(15) that if E%, is not
included in the gy entering ¢, is nevertheless present in the gy entering ¢, and vice-versa. From
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the first of (8), (10), (14) and (15), easily follows

oo o s_u
0Ex. dEx Sww, 4q. 94, (162)
W W 3y

3E% 3B 9E% oF T 3ERy (16b)

We further introduce two more thermodynamic potentials by appropriate Legendre
transformations. A complementary free energy § per unit reference volume is defined by

g = 8(Skx, 0, qn) = SxrExr — §(Exc, 6, qn). (17
In addition, a complementary elastic free energy & per unit reference volume is defined by
g =8(Skr, 0, qn) = SxrEfer — J’(E;a., 8, qn) (18)

where 8 =+ S E%:.
From (16a), (17) and (18) follows

__% . __02
KI = 3Sm_, EKL aSKL (193')
o __ % g __ (19b)

Using now (10), (13), (16) and (19b), the thermodynamic condition (9) can be written in terms
of the above potentials as

A

_o -( _% )
an ANuRU Su an ANU Ru ={ (20)
or
of og
‘5‘}%‘ ANuRu = (Su + 5‘(‘1{‘ Anu)Ru 20, (21)

4. IL'IUSHIN'S POSTULATE
The yield surface F = 0 in strain space is schematically shown in Fig. 2, where the space of
elastic strain E%,, is superposed to the space of the total strain Ex,. Each point in or onthe F =0
is characterized by the same values of gy, but has different Eg,. Thus, the 00’ connecting the

EKL

Fig. 2. Closed cycle in strain space followed by plastic loading at point T.
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origins of the total and elastic strains represents the common plastic strain E%, for each point
according to (14).

Consider now an isothermal quasi-thermodynamic closed cycle of deformation at a material
point, which is represented by the closed strain path MTPM, Fig. 2. This path has three parts. The
first part MT carries the material point from the elastic state M to the plastic state T. The second
part TP consists of a very small increment Ex, df of the total strain, followed by plastic loading.
And the third part PM is an elastic return to point M in strain space. Before proceeding into a
detailed consideration of each part an important point must be brought up. During the plastic
loading path TP, the assumption of a continuous variation of shape and position of the yield
surface is made. The new position of the yield surface in the neighborhood of T is shown by a
dashed line in Fig. 2, which passes through P due to the consistency condition. Observe that the
yield surface has moved outward at T, and this is always true for both stable or unstable behavior
for the strain space formulation, according to the observations made in the introduction. If,
however, the stress space representation of the yield surface and Drucker’s postulate of a stress
cycle were considered, an inward motion of the yield surface would be obtained for unstable
behavior. This apparently unimportant detail could cause problems when M is taken very close
to T in the limit, as is done in the following. In that case M which is now the beginning and the
end of a stress cycle, could be found outside the changed yield surface in stress space, and in fact it
would be impossible to return to M within the neighborhood of T for unstable behavior. This was
discussed in the introduction for the uniaxial case and shows the weakness of a stress space
formulation together with Drucker’s postulate to treat such cases. On the other hand, with
Il'iushin’s postulate and a strain space formulation no such problems arise and corresponding
proofs of normality and convexity follow for unstable behavior as well as for a stable one.

Coming back to the closed strain path MTPM, the state of the material is defined as follows.
State M: EY., gn, 6. State T: EX%., qw, 0. State P: EL, + EX, dt, qu + g dt, 6. State M’ (which
is point M in strain space). E¥;, qn + g~ dt, 6, where a superscript at Eg; indicates the
corresponding point representing the state in strain space. For an isothermal process, if follows
from (7) and (8a)

A

¥ = SkiExe +qu’;qn 22)

Using (22), the work done along a path from State 1 to State 2 is given by

A

2 . Ead
W, = [ SxiExe dt = ¢n— ¢ —[ a9 dr, 23
1 t 04N

where a subscript at ¢ indicates the corresponding state and the last integral from 1 to 2 is path
dependent. Applying (23) to the different parts of the path MTPM from state M to state M’ we
obtain for part MT: Wier = ¢r — thy, for part TP: Wrp = Yp — $r — (3] 8¢ )dn dt and for part
PM: Wor = the — . For the part TP the integrand substitutes the integral in (23) within second
order of approximation, due to the smallness of Ex, dt along TP. For the same reason we can
write

— =§§’qu dt 4)

where reference was made to the previous state description at M and M'. Adding up Wiz, Wrp
and Wy, we obtain the total work W, and with the help of (6) and (24) II'iushin’s postulate (1)
yields

-55-;(:&" —§rrn =0, 25)

5. RESULTING THERMODYNAMIC CONDITIONS
A combination of the thermodynamic relation (20) or (21) with (25), yields restrictions on
elasto-plastic coupling. To this end, we first use (25) to derive expressions for the direction Ry of
the plastic strain rate E% in strain and stress space.
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(a) Strain space
The difference in the total and elastic strain at points T and M is given by

EKLIT - EKL‘M = E;(L‘T - E;(L‘M = X€kL (26)

where x =0 and ek, is a unit vector in the six-dimensional strain space along the straight line MT,
Fig. 2. From (15) and (26) follows

tﬂfM lIl‘r «IM lﬁ"r = ag’ Xéxr + O(xz) == ""'Lxexi, + O(XZ) (27)

where O(x?) are quantities of second and higher order in x. Using (13) and (27) we can write

A

2

. R P
”5’3‘;(‘/’1\4 —Yr)iv=-— 3 Ex:gqu AnpRyxeg, + 0(x?) (28)

where the second order_derivative is taken at point T. Similarly, using (10), (13), (16) and (27) we
can write in terms of

D i == — e 4=
3(‘1‘;(4',\1”‘1’7)&—8% (e ll'r)fn‘*'aE?I(‘/’M ¥r)Ry

= s =90+ (355 B~ R

i df d lfl ) 2
(aE < oE; aE LBQNANH Ruxe,a_+0(x) (29)

where the second order derivatives are taken at point T. From x >0, (28) and (29), II'iushin’s
postulate (25) yields

MxioRuex, +O0(x)20 (30)
with

___ 3% %y % 31
Mices = 3Bk 3gn Arar = JE LaEH dE%10gx Are G

a fourth order tensor which can be arranged as a six by six square matrix. Assume now that point
M approaches point T remaining always inside the yield surface, but otherwise in an arbitrary
way. Then x - 0 and (30) must be satisfied for all possible directions ex;. This is possible only if

Ry = )«M{,‘KL;,%%, A>0 62)

where Mabie M xir= 8aidar.

(b) Stress space
Using (3) and (19a), the equation of the yield surface in stress space is given by

f(SKL, 8, qN) =0 (33)

where the gy in (33) may differ by an extra E%, from the gy entering (3). For example, the yield
surface given in the form (33).may not include E%, in its gy, while using (16a) in order to convert
(33) to (3) intreduces E%;. as one of the qx in (3). Considering the corresponding points M, T in
stress space we can write

Skt }’r — Skr lu = XSk, x 20 (34)
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where sg;. is a unit vector in the six-dimensional stress space along the direction MT. From
g =&+ Sk E%y., (1923) and (34) follows

. o - - g
v —Cr=@m—8r=-— £ Xsgr + O(xH) =~ xSk + O(x?). (35)
anL SKL

Using (13), (19b) and (35) we obtain

2

an ('IIM ll;r)"n aSa e AnpRuxsgr + O(XZ) (36)

where the second order derivative is taken at point 7. Using now the first and third member of
(29), (10), (13), the first of (16a), the second of (19b), (34) and (35) we obtain

38

a A ) 6 T T ———
éa:(lllu - OIIT)I'N = aq_N(llfM - lﬁT)AnuRu + x5y Ry = (81(:51,1 + aSKLan

AM,) Ruxsie + 0(x?)
37

with 8pq the Kronecker delta. From x >0, (36) and (37), I'iushin’s postulate (25) yields:

QxLuRuskr +0(x) =0 (38)
with

QKLH ANIJ 51(151.! —"“‘“““‘ANIJ (39)

EAY Laq

a fourth order tensor which can be arranged as a six by six square matrix for convenience. By an
argument similar to the one which led to (32), we obtain for the direction R, in stress space

Ro = uQik-2, u>0 (40)
7St

where QZ};KLQKLH = Bardas.

Starting with a non-negative work assumption in a closed cycle of deformation, Naghdi and
Trapp[13, 16] derive two local inequalities one of which is used to derive an expression for the
direction of the plastic strain rate in stress space. It can be shown that (40) is identical to this
expression (eqn (5.22) in [15]), if gn are chosen to be the plastic strain E%, and a work-hardening
parameter k where & = Hx; E%;. Under the same choice of gy, the second inequality (eqn (20)2in
[16]) can be obtained by multiplying (32) with — LMasiEas and using (31), (8)., and (4) with 6 = 0.
Alternatively, the second inequality in {15, 16] can be used to derive (32) when the loading
function is defined by eqn (4), as in the present strain space formulation.

We can now combine the thermodynamic relations (20) and (21) with the relations (32) and
(40) derived from Il'iushin’s postulate, to obtain the final forms

_3 F _ (o 9 ) F
3 ANL!MHKLaEKL = (68}; Ian —Anu | Mikisg— 3Ers =0 (41)
or
2, a3
—““ANUQ BKLGG f (Su +— g ANIJ) DKL f =0, 42)
SK aSKI..

The My and Qx.r can be appropriately expressed in terms of  or  and £ or § respectively
from (31) and (39). Thus any one of the (41) and (42) will be finally expressed in terms of a single
thermodynamic potential, with external variables the Ex. and 6 only, or S and 6 only,
whichever is more convenient for the purpose at hand.

The relations (41) or (42) impose restrictions on elasto-plastic coupling, provided that the
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structure of the corresponding thermodynamic potential assumes such coupling. In the following
section, specific examples of this kind will be presented, but it is interesting to see at this point
exactly the opposite, i.e. uncoupled elastic and plastic properties and their effect on the previous
relations. Considering g as the corresponding potential, assume a decomposition of # of the form

£ = §:(Sku, 0) + 22(qn)- 43)

1t follows from (19a) and (43) that E%, is a function of Sk, 8 and not of g, therefore no coupling
exists. In addition, (39) yields Qg = 8xOrs and (40) gives

- _3{; w>0 (@4)

which is the normality condition. This is in accordance with [1, 15, 16] but differs from [3] where
the authors conclude without formal proof that normality holds true with or without coupling.
The reason for the difference is that here the coupling effect is taken into account early through
Qxow in (38) and is preserved during the limiting process where point M approaches T. Finally,
the last of (42) becomes

og
(s,,+ % AN,,) a"S{, @5)

The effect of a relation similar to @5, with a corresponding decomposition for ¢, on the shape of
the yield surface and the form of i, has been studied in [5, 9], with E% the corresponding gu.

6. EXAMPLES OF THERMODYNAMIC CONDITIONS ON ELASTO-PLASTIC COUPLING

In the following the thermodynamic potential # will be considered a function of Sk, 8 and
only one scalar piv denoted by q, where denoting with Ak, the corresponding Anx:.

§=Ag Bk (46)

Denoting with a prime the partial differentiation with respect to g, the second member of (39) yields

Qxiu = 8xids + A 47

3SKL

Representing the stress and strain tensors as six dimentional vectors in stress and strain space,
Qxor can be arranged as a six by six square matrix. The quantity Bxuy = (32'/3Sxe)Ay
considered as a square matrix B, satisfies the condition B? = ¢rB-B. Thus, the inverse of Q. .y,
according to eqn (A6) of the Appendix, is

Ea | agl

Qo= 8ixdn. — ( 38q AQR) 3 S

(48)

with (3g'/3Sgr)Aqr # —1 for the inverse to exist.

To proceed further a specific choice of g is necessary. Here, we choose the plastic work W»,
whose rate is given by

WP =Sy, E%: (49)

thus Ay, = Sk With W” being the only piv entering (33), isotropic hardening is implied.
Therefare, the yield surface in stress space includes the origin and we assume in addition that is
convex so that (3f/3Sx.)Ske =0. Note that the convexity cannot be proved on the basis of
Iliushin’s postulate if elasto-plastic coupling exists[1], but must be assumed which is an
experimental fact in most real cases. With these general assumptions and the aid of (48), the
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second member of the thermodynamic condition (42) yields
- og'
(1+g)(1+~——-—aSKL SKL)zo (50)

for all Sk., 8 and W? satisfying f = 0. If II'iushin’s postulate was not consistently employed but
instead the normality condition (44) was a priori assumed together with the convexity of f = 0 and
W?” was the only piv entering g, the second of (21) vields

1+g =0 5D

A comparison of (50} and (51) clearly shows the effect of II'iushin’s postulate in this case. The
normality condition assumed in deriving (51), normally follows from II'iushin’s postulate if
elasto-plastic coupling does not exist according to (43) and (44). But such coupling is also
assumed in (51). Therefore, although it is conceivable from a general point of view to assume
normality without II'iushin’s postulate, together with elasto-plastic coupling, it is believed that
(50) is the result of a more consistent and rational approach than (51).

If now £ is assumed to be a homogeneous function of order m in Sk, so is ' and using Euler’s
theorem for homogeneous functions we obtain from (50)

d+g¥l+mgh=0 (52)
thus
1+mg' >0 (53a)
or
1+g'=<0 (53b)

where existence of the inverse in (48) excludes the equality sign from (53a). Since it is reasonable
to assume that g’ is a continuous function of Sk,, 8 and W, it is impossible to find two different
states of the material where (53a) is active for the one and (53b) is active for the other. The
contrary would imply that the continuously varying g’ assumed the values in the open interval
(—1, —1}m) violating the thermodynamic requirement.

In order to see a concrete application of (53), assume for § the homogeneous form of second
order (m =2)

1
g= 'Z'BIJKLSIJSKL (54)

where the fourth order tensor Byx, of inverse elastic moduli is a function of W? and 6. In
addition, assume that f = 0 depends on the deviatoric stress tensor. The Tresca and Mises yield
criteria for example, are particular cases. Thus, if S is a stress state satisfying f = 0 and one of
(53) for a given W and 4, it follows that S, = S%+ p8,, must also satisfy the same conditions
with p an arbitrary hydrostatic pressure. For Sy, eqn (54) vields

44

1
g' =3B LS WS%L+ pBix, S %ot 'i P *Blixx (55)

3] e

which must satisfy the appropriate condition (53) satisfied by the first term in (55) which is the
value of g’ for S%. It is understood that the contraction operation implied by the repeated indices
JJ and KK in (55) suceeds the partial differentiation with respect to W”. The (53a) or (53b) can be
viewed as a quadratic expression in p with g’ given by (55). If this quadratic expression has real
roots, there will always be a range of values for the arbitrary p which violates (53). Thus, the
quadratic expression must have complex roots and in that case assumes the sign of the coefficient
B'yxx of p®. Therefore, necessarily follows

Bk 20 (56)
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for (53a) and (53b) respectively. Observe that (56) applies to any yield condition f = 0 depending
on the stress deviator, and is a necessary (but not sufficient) condition. In erder to derive
necessary and sufficient conditions, specific forms of f=0 and g2 must be assumed.

In the following an isotropic material obeying Mises and Tresca yield conditions is assumed.
The form of By is

1+
By =— % Subrr + 2_El"(5n(8u, + 8p8ix) (57)

with the Young’s modulus E and the Poisson’s ratio » functions of W, and 8. The Mises yield
criterium is given by

F= 88y 1Sl - ¥7=0 58)

with Y(W?) the changing yield stress in a uniaxial tension/compression loading. The objective is
to find conditions on E, v and their change E’, v’ with W7, for plastic stress states satisfying (58)
and one of (53). Using (54), (57) and (58), (53a) vields (m =2)

[% (lli:"f) - (é)’](s“)u%(%—’f)' Y2 +1>0 (9)

where Skx is arbitrary since use of (58) was made in deriving (59).
Satisfaction:of (59) for all Skx, implies necessarily that both the coefficient of (Sxx)* and the
constant term in (59) must be positive, which yields respectively

E 2
F+l—2v

<0 (60)
and

E_v __3E
E T+y Al+nY

(61)

where use of v < 1/2 was made, following from the positive definiteness of g. It is interesting to
note from (57) that Bk = (3/E(2v — 1)E’ — 2Ev'], and (56) with the > 0 sign yields (60) again.
This is expected since Mises criterium belongs to the general class of yield function which
provided (56) as a necessary condition. However, (60) and (61); which can be written under the
compact form

E_ . [ 2 & 3E
E<“‘“‘[ -2’ 1+p+2(1+u)Y2] (622)

are also sufficient conditions for (53a), since (62a) suffices for the satisfaction of (59). Similarly,
eqn (53b) vields

g’_ _2 v 3E
Eama"[ -2, i+y+(1+v)Y2]' (62b)

In order to find which form of (53) or (62) is active, consider a uniaxial stress state S,, at yield, i.e.
Su=Y(W?). Then

g'=—(E'REHY>. (63)

In a material like concrete for example, it has been found experimentally that E decreases and »
increases with plastic deformation[10, 11]. Therefore it can be assumed

E'=0, ' =0 64)
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From the first of (64) is seen that g’ in (63) satisfies (53a). Therefore, from the discussion
following eqns (53) is concluded that the (53a) and correspondingly the (62a) are the appropriate
conditions in general if E'<0. In fact, the second of (64) and (62a) render (60) alone the
necessary and sufficient condition in this particular case.

Consider now the Tresca yield criterium in terms of the principal stresses

f=8-8-Y=0, S=5=8§ (65)

with I# J# K# I assuming the values 1, 2, 3. Using (54), (57) and (65), (53a) yields

1+V ' Y v\’
[(—E—) -3(5) ]‘I’”(E) Y4150 (66)
with
o= SIZ+ sz+ SK2= 3Sx2+2(x + Y)SK +x2+ Y2 (673)
=308 - S0+ (S~ Se P+ (S~ SF1= (" + Y- xY) G
0sx=S-Sk=<Y, ®>0, %stqrsyz. (67¢)

Since use of (65) was made in deriving (67), the Sk in ® is arbitrary and because ¥ is bounded,
satisfaction of (66) for all Sx yields necessarily a positive value for the coefficient of ®. Thus, eqn
(60) follows again (or (56) with the sign > 0). If now (¢/E)' <0, the combination of Sk, x which
mostly enhances the negative contribution of the second term in (66) must be found in order to
derive an additional sufficient and necessary condition (the case (v/E) > 0 is thus covered). To
this end observe that for any given value of x the minimum value of ® is (2/3)¥ for
Sk = (—1/3)(x + Y). Therefore (66) yields

2 /1+wY
§(T)W+l>0 (68)

which must be satisfied for all values of ¥, thus for its maximum Y? according to (67c) which
yields again (61) (covering the worst possible case for ((1+ »)/E)’ < 0). Therefore (62a) follows
from (53a) for the Tresca criterium, as a necessary and sufficient thermodynamic condition on
elasto-plastic coupling. Similarly (62b) follows from (53b) for the same criterium.

If II'iushin’s postulate is not employed, the active thermodynamic condition is (51) which
yileds (56) with a = sign; in particular for an isotropic material obeying Mises or Tresca yield
criteria, (51) yields (62b) with a < sign and min instead of max.

Finally observe that non-existence of the inverse in (48) yields 22’ + 1 = 0 and from (59) follows
that »'= EQv — D/2Y? E' = E¥}Y~

7. CONCLUSIONS

In this presentation II’iushin’s postulate was restated within a general thermodynamic strain
space formulation of rate independent plasticity be means of plastic internal variables. Both the
postulate and the strain space formulation apply simultaneously to stable (rising uniaxial
stress-strrain curve) and unstable (falling stress-strain curve) material behavior, as opposed to
Drucker’s postulate and the stress space formulation of plasticity, which fail to treat in a unified
approach both behaviors.

Within this framework Il'iushin’s postulate yields a general condition expressed in terms of
different thermodynamic potentials. Further use of this condition yields. expressions for the
direction of the plastic strain rate in strain and stress space. The usual normality condition is
obtained, if the form of the corresponding thermodynamic potential implies uncoupied
elasto-plastic properties.

The general development yields a thermodynamic condition on the corresponding potentials
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which is combined with the results of II'iushin’s postulate to furnish closed form conditions on
elasto-plastic coupling. This is further illustrated by a specific example where the only plastic
internal variable is the plastic work W” and the corresponding condition is compared against the
result obtained without Il'iushin’s postulate. Assuming further a quadratic form of the
corresponding thermodynamic potential and a general form of the yield surface, it is possible to
derive an explicit necessary condition on the inverse elastic moduli and their change with W?,
For isotropic elastic behavior and the Mises and Tresca yield criteria necessary and sufficient
conditions on the Young’s modulus and Poisson’s ratio and their change with W? are obtained for
the thermodynamic condition to be satisfied. It will be of further interest to compare the present
theoretical results to corresponding experimental observations on elasto-plastic coupling.
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APPENDIX
Find the inverse of the square matrix
Q=I+B (AD
when
B*=h-B (A2)
with h a scalar. We can always write
Q'=I1+C (A3)
From (Al), (A3) and QQ' =1 follows
B+C+BC=0. (A9)
With C = AB, (A4) yields
B*=—[(A +1)A]B. (AS)
From (A2) and (AS) A can be evaluated and finally
Q'=I-(1+h)"'B (A6)

with h# - 1. A common form of B satisfying (A2) is
B, =XZ, with h=1trB=X2, (A7)

where X,, Z, are vectors.



